Circuito equivalente

Essendo la macchina trifase, si fa riferimento ad una fase del motore equivalente Y/Y (quindi le correnti sono uguali a quelle di linea, mentre le tensioni sono quelle stellate che andranno moltiplicate per al fine di ottenere quelle concatenate di linea).

Per quanto riguarda lo statore, il suo circuito equivalente è uguale a quello del primario di un trasformatore, valgono le stesse identiche considerazioni con l'osservazione che la f.e.m. indotta è originata dal taglio degli avvolgimenti statorici da parte del campo magnetico rotante avente distribuzione sinusoidale nel traferro, mentre nei trasformatori la stessa f.e.m. indotta era originata dalla concatenazione con l'avvolgimento primario del flusso utile variabile sinusoidalmente nel tempo.

Per quanto riguarda il rotore, si devono considerare:

a) la resistenza ohmica di una fase equivalente a stella R2 [W] indipendente dalla velocità del motore;

b) la reattanza di dispersione di una fase equivalente a stella dovuta ai flussi dispersi di rotore Xd2(s) [W]. Tale reattanza non è costante ma varia al variare della velocità del rotore (cioè è funzione dello scorrimento s ). Infatti, variando lo scorrimento, varia il valore della frequenza rotorica così che:

dove Xd2(1) è la reattanza di dispersione rotorica a rotore bloccato. Si osserva che Xd2(1) è il massimo valore che la reattanza può assumere, infatti mano a mano che il rotore acquista velocità lo scorrimento diminuisce ( s = 1 all'avviamento, s vale pochi centesimi a regime, s = 0 teoricamente a vuoto). Si può quindi dire che l'impedenza rotorica vale:


Considerando che la f.e.m. stellata che agisce su ciascuna fase rotorica vale , la corrente che circola in ciascuna fase del rotore sarà data da:

Si osserva che la corrente che circola in ciascuna fase del rotore, quando esso ruota con scorrimento s , è la stessa che si avrebbe se il rotore fosse fermo ( s = 1 ) ma con la resistenza ohmica di ogni fase rotorica aumentata dal valore R2 [W] al valore [W].

La quantità rappresenta la potenza trasmessa dallo statore al rotore. Tale potenza sarà pari alla somma della potenza dissipata per effetto joule nella resistenza rotorica e della potenza elettrica trasformata in meccanica (potenza meccanica generata):

Pertanto, sdoppiando il termine nella somma:

si possono mettere in evidenza separatamente la potenza persa per effetto joule PJR e la potenza meccanica generata PM per ciascuna fase. Ci riduciamo così al circuito equivalente di una fase Y/Y sopra disegnato. In tale circuito, che altro non è che l'interpretazione circuitale dell'equazione (*) , le frequenze rotoriche sono le stesse dello statore essendo f2(1) = f1. Osserviamo che se il rotore è bloccato (situazione all'avviamento) si ha s = 1 ed e pertanto tutta la potenza trasmessa viene dissipata per effetto joule, invece se il rotore raggiunge la velocità del campo magnetico rotante (cosa naturalmente impossibile) si ha ed così che il circuito rotorico risulta aperto e quindi sono nulle sia la corrente rotorica che la potenza trasmessa.

Come per il trasformatore, è possibile riportare allo statore (primario) gli elementi del rotore (secondario) dando luogo al circuito equivalente:


Se poi si trascura la c.d.t. nello statore, ovvero si ritiene la f.e.m. indotta nello statore E1 costante ed uguale alla tensione applicata V1Y , ovvero si suppone che la macchina funzioni a flusso per polo costante, si potrà trasportare i due rami trasversali a monte di tutto ed ottenere così il circuito equivalente semplificato ridotto a statore riportato sopra, per il quale:

Re' = R1 + R2' [W] , Xe' = Xd1 + Xd2'(1) [W]

Macchine asincrone
Programma per la classe quinta
Home Page